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We argue that in the color-flavor-locking (CFL) superconducting phase classical

soliton solutions can exist, whose excitations should be interpreted as states formed

by a quark (or an antiquark) and condensed diquarks. This finding extends the

picture of quark-hadron-continuity showing the existence of a region, intermediate

between the CFL and the hypernuclear phase, where chiral solitons and Nambu

Goldstone bosons can exist. We derive an expression of the soliton mass in terms

of the QCD coupling, gs, and the Nambu Goldstone boson parameters. From the

quark-hadron continuity we can draw an argument in favor of the interpretation of

the Θ+(1540) particle in terms of a strange antiquark and two highly correlated ud

pairs (diquarks).

I. INTRODUCTION

The observation of the baryon resonance Θ+(1540) has been recently reported by several

groups. The results of the LEPS [1], DIANA [2], CLAS [3, 4], SAPHIR [5], SVD [6], COSY-

TOF [7], ZEUS [8] and HERMES [9] experiments as well as analyses of old bubble chamber

experiments [10] show the existence of this narrow state (Γ ∼ a few MeV), decaying into

K+n or K0
sp. The simplest quark model interpretation is that of a pentaquark, i.e. an

exotic state formed by five quarks: ududs̄. Other narrow exotic cascade states, e.g. a Ξ−−

state with quantum numbers B = 1, Q = S = −2, and also a Ξ− and Ξ0 state have been
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reported by the NA49 Collaboration, see [11]. Also these signals can be interpreted as

pentaquark states, e.g. for Ξ−−, dsdsū. Much experimental effort is expected in the near

future to consolidate these findings and clarify the experimental problems. In any event

the appearance of exotic states, coming after years of fruitless experimental researches of

exotica, has revived theoretical interest in QCD spectroscopy and its low energy models.

Pentaquark states were indeed predicted long ago in the framework of the chiral soliton

model [12, 13], which is an extension to three flavors [14, 15, 16] of the Skyrme model

[17, 18]. Its mass was also correctly predicted by [19] and [20]. In the chiral quark soliton

model [21, 22] all baryonic states are interpreted as arising from quantizing the chiral nucleon

soliton and the pentaquark emerges as the third rotational excitation with states belonging

to an antidecuplet with spin s = 1/2. Other interpretations have been proposed after the

discovery of the Θ+(1540), most notably the one of Jaffe and Wilczek [23, 24] who propose

that the Θ+ comprises two highly correlated ud pairs (diquarks: QQ) and an s̄. Diquark

properties are similar to those of the diquark condensates of QCD in the high density color-

flavor-locking (CFL) phase [25]. The two diquarks are in spin 0 state, antisymmetric in

color and flavor. Together they produce a QQQQ state in the flavor-symmetric 6f that must

be antisymmetric in color and in p−wave to satisfy Bose statistics. When combined with

the antiquark the diquarks produce a 10f with spin 1/2 and positive parity (they can also

produce a 8f , and mixing is possible).

The hypothesis that the attractive interaction in the antisymmetric color channel may

play a role both at low and high density quark matter is especially interesting in the light

of the quark-hadron continuity which has been suggested [26] to exist between the CFL and

the hypernuclear phase. Due to the formation of the CFL condensate that breaks color,

flavor and the electric charge, though conserving a combination of the electric charge and of

the color generator T8, the physical states are obtained by dressing the quarks by diquarks.

The result is that in this phase eight quarks have exactly the same quantum numbers of

baryons. Also the ninth quark corresponds to a singlet with a gap which is twice the gap of

the octet. The same phenomenon takes place for the other states, as for instance, the gluons

in the CFL and the vector mesons in the low density phase. In fact, the gluons are dressed

by a pair QQQQ giving rise to vector states with the same quantum number of the octet of

vector resonances (ρ, etc.). Also, the NG field φ associated with the breaking of U(1)V can

be related to a possible light meson H of the hypernuclear phase [26]. The state H which
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is a six-quark singlet of the type udsuds was introduced by [27] in the context of the bag

model. A more detailed discussion of the quark-hadron continuity can be found in [26].

Quark-hadron continuity plays a role in relating quark and baryons in the low-lying

octet. Apparently it also matters in assigning a role to diquark attraction at zero baryonic

densities. In this Letter we suggest that another sign of it is the possible existence of

baryon chiral solitons also at finite density. We show below that they could arise in QCD at

finite density by the existence of a Skyrme term in the effective lagrangian for the Nambu-

Goldstone bosons of the CFL phase. The static solution of the classical equations of motion

has the same form of the chiral soliton model of refs. [15, 16] and [12, 13]. Therefore its

quantization will eventually produce baryonic states with properties similar to those of the

low-lying baryonic octet as well as of its excitations, and in particular the pentaquark.

In Section II we discuss the effective lagrangian describing the light modes of the CFL

phase [28] and we show that the decoupling of the gluons generate a Skyrme term. In Section

III we evaluate the soliton mass by extrapolating the parameters of the effective lagrangian

down to chemical potentials of order 400 ÷ 500 MeV . We find a value of about 1200 MeV

which is in the right ball-park. Also we evaluate the size of the soliton and we discuss the

validity of our calculation. In Section III we discuss our results with a particular emphasis

about the implications of the quark-hadron continuity idea on the pentaquark states.

II. THE EFFECTIVE LAGRANGIAN FOR THE GOLDSTONE BOSONS

We recall briefly the form of the effective lagrangian for the light modes of the CFL phase.

At this level the gluons should be already decoupled since p ≪ ∆ and we know from [29]

that the gluons in the CFL phase have physical masses of order ∆. However, since we want

to show that precisely the process of decoupling the gluon fields produces the Skyrme term,

we will write the effective action for the full set of 18 Goldstone bosons from the breaking

of U(3)L ⊗ U(3)R ⊗ SU(3)c to SU(3) ⊗ Z2 ⊗ Z2. The set includes also the Goldstones to

be eaten up by the gluon fields. The effective lagrangian in this form has been discussed in

[28] (see also [30]). We can associate the Goldstone fields to the left(right)-handed spin 0

diquark condensates according to

X̂ i
α ≈ ǫijkǫαβγ〈ψj

βLψ
k
γL〉∗, Ŷ i

α ≈ ǫijkǫαβγ〈ψj
βRψ

k
γR〉∗, (1)
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with X̂ and Ŷ 3×3 unitary matrices. For the following it will be more convenient to separate

the U(1) factors from X̂ and Ŷ by defining U(1) and SU(3) fields

X̂ = Xe2i(φ+θ), Ŷ = Y e2i(φ−θ), X, Y ∈ SU(3). (2)

The transformation properties of these fields under the full symmetry group are

X → gcXg
T
L , Y → gcY g

T
R, φ→ φ− α, θ → θ − β. (3)

with α and β the parameters of the groups U(1)V and U(1)A respectively and gc ∈ SU(3)c,

gL,R ∈ SU(3)L,R.

The breaking of the global symmetry can be discussed also using the gauge invariant

fields

Σi
j =

∑

α

(Y j
α )∗X i

α → Σ = Y †X. (4)

The Σ field describes the 8 Goldstone bosons corresponding to the breaking of the chiral

symmetry SU(3)L ⊗ SU(3)R, as it is made clear by the transformation properties of ΣT ,

ΣT → gLΣT g†R. That is ΣT transforms as the usual chiral field. The other two fields φ and θ

provide the remaining Goldstone bosons related to the breaking of the U(1) factors. However,

since the U(1)A symmetry is anomalous although, asymptotically in µ, gets restored, we will

omit this field in the following discussion.

In order to build up an invariant lagrangian, it is convenient to define the following

currents

Jµ
X = XDµX† = X(∂µX† +X†gµ) = X∂µX† + gµ,

Jµ
Y = Y DµY † = Y (∂µY † + Y †gµ) = Y ∂µY † + gµ, (5)

with

gµ = igsg
a
µT

a (6)

the gluon field and

T a =
λa

2
(7)

the SU(3)c generators. These currents have simple transformation properties under the full

symmetry group G:

Jµ
X,Y → gcJ

µ
X,Y g

†
c . (8)
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The most general lagrangian, up to two derivative terms, invariant under G, the rotation

group O(3) (Lorentz invariance is broken by the chemical potential term) and the parity

transformation, defined as:

P : X ↔ Y, φ→ φ, (9)

is [28]

L = −F
2
T

4
Tr
[(

J0
X − J0

Y )2
)]

− αT

F 2
T

4
Tr
[(

J0
X + J0

Y )2
)]

+
1

2
(∂0φ)2 +

+
F 2

S

4
Tr
[

|JX − JY |2
]

+ αS

F 2
S

4
Tr
[

|JX + JY |2
]

− v2
φ

2
|∇φ|2 − 1

g2
s

Tr[ǫE2 − 1

λ
B2],

or, in terms of the fields X and Y

L = −F
2
T

4
Tr
[(

X∂0X
† − Y ∂0Y

†)2
)]

− αT

F 2
T

4
Tr
[(

X∂0X
† + Y ∂0Y

† + 2g0)
2
)]

+
F 2

S

4
Tr
[

∣

∣

∣X∇X† − Y∇Y †
∣

∣

∣

2
]

+ αS

F 2
S

4
Tr
[

∣

∣

∣X∇X† + Y∇Ŷ † + 2g
∣

∣

∣

2
]

+
1

2
(∂0φ)2 −

v2
φ

2
|∇φ|2 − 1

g2
s

Tr[ǫE2 − 1

λ
B2], (10)

where

Fµν = ∂µgν − ∂νgµ − [gµ, gν ], (11)

and

Ei = F0i, Bi =
1

2
ǫijkFjk. (12)

The parameters ǫ and λ are the dielectric constant and the magnetic permeability of the

dense condensed medium.

Notice that thee gluons ga
0 and ga

i in the CFL vacuum acquire Debye and Meissner masses

given by

m2
D = αTg

2
sF

2
T , m2

M = αSg
2
sF

2
S = αSg

2
sv

2F 2
T , (13)

where we have introduced

v2 =
F 2

S

F 2
T

. (14)

It should be stressed that these are not the true rest masses of the gluons, since there is a

large wave function renormalization effect making the gluon masses of the order of the gap

∆, rather than µ [29]. Since this description is supposed to be valid at low energies below

the gap ∆, we can decouple the gluons solving their classical equations of motion neglecting

the kinetic term. The result from Eq. (10) is

gµ = −1

2

(

X∂µX
† + Y ∂µY

†
)

. (15)
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By substituting this expression in Eq. (10), and performing a gauge rotation to get Y = 1,

one obtains

L =
F 2

T

4

(

Tr[Σ̇Σ̇†] − v2Tr[~∇Σ · ~∇Σ†]
)

+
1

2

(

φ̇2 − v2
φ|~∇φ|2

)

− 1

g2
s

Tr[ǫE2 − 1

λ
B2], (16)

where now

Ei =
1

4
[Σ∂0Σ

†,Σ∂iΣ
†], Bi =

1

8
ǫijk[Σ∂jΣ

†,Σ∂kΣ
†]. (17)

Therefore, except for the breaking of the Lorentz symmetry, we recognize in the first term

the lowest order chiral lagrangian and, in the last one, the Skyrme term [18].

It is interesting to notice that the idea of the Skyrme term generated by decoupling the

gauge boson of a hidden symmetry [31] is realized here by decoupling the gluons (see also

[32]). Notice also that one has to add to this effective lagrangian the Wess-Zumino term

as discussed in [33, 34]. It turns out that the Wess-Zumino contribution coincides with the

one at zero density (see also [35]). The addition of this term is vital for getting the right

quantum numbers for the baryons once the classical soliton solution is quantized [14, 16].

III. NUMERICAL ESTIMATES

Static solutions minimizing the energy are found assuming a constant field φ; for Σ we

make the usual choice [14] incorporating the hedgehog ansatz for the SU(2) chiral subgroup

Σ(x) =

(

exp[i(x·τF (r)/r] 0

0 1

)

, (18)

with r = |x|, F (0) = π, F (r) → 0 when r → ∞. The soliton mass is a functional of F (r)

subject to the boundary conditions given above. Minimization of the energy gives as a result

the usual relation between the parameters of the lagrangian and the soliton mass [18], [15].

In our case one should take into account a different normalization of the pion decay constant

and the pion velocity v, producing Fπ → 2FTv. Besides, the chromo-magnetic permeability

changes the coupling gs to gs

√
λ. As a result we get

M = 36.5
2FTv

gs

√
λ
. (19)

It should be stressed that the soliton mass is given here in terms of the parameters of the

low-energy theory, FT , v, the magnetic permeability of the dense medium λ and in terms of

the strong coupling constant gs. Therefore, at least in principle, there are no free parameters
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and everything could be determined by the fundamental theory. In fact, if we use the results

of the calculations at high density (see e.g. [29, 36]) we get

F 2
T =

µ2(21 − 8 ln 2)

36π2
, v =

1√
3
, (20)

and

1

λ
= 1 +

µ2g2
s

30π∆2
(a+ b) ,

a + b =
1

108π

(

41 − 112

3
ln 2

)

. (21)

The gap is also determined by QCD at high density [37]. We can now extrapolate this

high-density prediction to values of µ of order 400 ÷ 600 MeV to get an idea of the order

of magnitude in a region that should be not too far from the hypernuclear phase. Also we

consider ∆ = 40 and 80 MeV . For gs we take ∼ 3.5 corresponding to g2
s/4π ∼ 1. The

450 500 550 600

1200

1400

1600

1800

2000

2200

2400

400

M (MeV)

µ(MeV)

∆(MeV) = 80

= 40∆(MeV)

FIG. 1: The soliton mass at finite density in the CFL phase as a function of the baryonic chemical

potential µ, for two values of the gap ∆.

soliton mass M reported in Fig. 1 corresponds to the classical solution, and does not take

into account SU(3)f breaking corrections or excitation energies such as, for example, those

corresponding to the pentaquark states.

Fig. 1 shows that around 400 MeV the soliton mass is about 1200 MeV, which, in the

light of the quark-hadron continuity, is in the right ball-park, see the discussion in the next

Section. It also shows that at weak coupling, i.e. at larger values of the chemical potential
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the mass increases and the soliton effectively decouples. Notice that the dependence of the

soliton mass on the gap, at least in this range of µ and ∆, is rather weak due the very

small coefficient in front of µ2/∆2. In [31] corrections due to higher derivative terms have

been discussed arguing that they should be small, however, we would like to discuss here

the validity of our approximation by looking at the size of the soliton. Using the results

obtained in [15] we find for the isoscalar mean radius (which can be roughly assumed as the

size of the instanton)

r0 ≈
2.11

2vFTgs

√
λ

(22)

On the other hand our effective lagangian is valid up to energies lower than the gap ∆.

Therefore, in order to describe correctly the soliton by means of our effective lagrangian,

one should have 2vFTgs

√
λ ≪ 2.11∆. We have studied this condition by varying µ. Since

the mass of the soliton increases with µ it decouples at high values of the chemical potential

and we do not expect to get a good description of the soliton in this regime. Let us now

consider smaller values of µ for which λ ≈ 1 (in practice this means µ <∼ 10∆). We get the

condition 1/r0 ≈ 0.4µ. If we use µ ≈ 400 MeV and ∆ ≈ 80 MeV , the result is 1/r0 ≈ 2∆.

Strictly speaking our description is not valid up to this energy. However, in reference [29]

we have shown that within the same approximation one can evaluate the mass of the gluons

(of order 2∆) in the CFL phase within a 30% with respect to the exact value. Therefore

we can hope that the same approximation holds at the same level also in the present case.

Clearly a better approximation would be obtained by introducing higher derivatives in the

expansion. Let us estimate the error we are doing neglecting them. To this end we will vary

the function F (r), taking into account that also for the varied function, F (0) = π, which

gives the right topological number, and that, for r >> r0, the new terms are negligible.

Therefore we have chosen to vary F (r) in two ways. In both cases we vary continuously

F (r) within the interval (0, 2r0) by keeping F (0) and F (r) fixed, for r > 2r0. In the first

case we increases the value of F (r) at r0 by 50%, whereas in the second case we take it

1/2 of the original value. The results are the following: the mean radius increases of about

30% in the first case, whereas it is reduced by 50% in the second one. On the other hand

in both cases the mass of the soliton increases of about 30%. This result follows from our

estimate which is a lower bound for the soliton mass since it is obtained by a variational

procedure. Therefore, our estimate is that the error we are performing should not be higher

than 30-50% and that our results should be qualitatively robust.
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Again we remark that, within our approximation, we have obtained a very well defined

expression for the soliton mass in the CFL phase, containing no arbitrary parameters.

IV. DISCUSSION AND CONCLUSIONS

In Section II we have shown that at energies close to the Fermi energy EF and much

smaller than EF + ∆ the fermions decouple and the relevant degrees of freedom are the

Nambu-Goldstone bosons that can be thought of as QQQQ bound states. As discussed in the

introduction we expect that in the CFL phase, besides these states, both quarks and gluons

become dressed, thus producing states such as qQQ, QQgQQ, etc. The very high density CFL

case is depicted on the right-hand corner of the cartoon in Fig. 2. In Section III we have

soliton states

quark-hadron continuity µ

hypernuclear

B Θ
π

CFLCFL

B Θ,( ) qQQ

classical NGB QQ QQ gQQQQ

q QQQQ

ρ

FIG. 2: A cartoon depicting the transition from the CFL to the hypernuclear phase.

shown that by taking the next-to-leading order in the gluon decoupling process we get a

Skyrme term in the low energy lagrangian. Therefore the theory predicts soliton states with

the same quantum numbers of baryons. However, being at weak coupling, the solitons have

large masses (M ≈ 1/gs). As a consequence we expect the solitons to decouple at the CFL

densities. At lower densities QCD coupling gets stronger and the soliton mass decreases. At

these intermediate densities we expect the low energy physics to be still described by the

chiral lagrangian, but with the soliton states entering in to play. This correspond to the

central part of Fig. 2. As discussed in the previous Section, this is also the region where we

expect that our approximation is valid.

By decreasing the density one should go smoothly to the hypernuclear phase where the

physical states are pions, vector mesons and baryons (with the further singlet state H ≈
udsuds corresponding to the Goldstone boson φ), as shown in the left corner of Fig. 2.
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Therefore the transition from CFL to the hypernuclear phase appears completely smooth

and without phase transitions. From this point of view the existence of pentaquark states

seems completely natural. In fact, in the high-density limit, as we have seen, quarks live

in a dense medium made of diquark condensates. Therefore a quark can bind a given

number of diquarks. In particular, one can form a bound state of the type q̄QQQQ, that is a

pentaquark. This same object is naturally described as a soliton, and therefore it is expected

to exist also in the intermediate region and, by the quark-hadron continuity argument, in

the hypernuclear phase. Strictly speaking we cannot say that this state persists also through

the transition from the hypernuclear to the nuclear phase, but this hypothesis appears to be

very natural. Some support to these qualitative ideas comes from the numerical results of

Section III. Using the low energy parameters, as derived from the high-density limit, in the

intermediate density region, µ ≈ 400 ÷ 500 MeV we get the right order of magnitude (see

Fig. 1), that is 1.1 ÷ 1.7 GeV varying the gap between 40 and 80 MeV . In the same vein

we can comment briefly about the expected width for the lowest lying pentaquark state. In

order for it to decay into a baryon and a kaon a breaking of diquark condensates should be

produced. Of course this is very unlikely to happen at high density. One may expect that

this feature survives going all the way down to the nuclear phase.
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